30°三角形の面積計算受験問題集の〔斜辺×斜辺÷4〕って何?

30度の二等辺三角形
2020.06.07

30度の角度を持つ二等辺三角形の面積計算です。

スタンダードな解き方のほか、進学塾や受験問題集で用いられる「斜辺×斜辺÷4」の意味を解説しています。

  • 三角定規(小学3年生)
  • 面積計算(小学4~5年生)
  • 三平方の定理(中学3年生)
  • 三角関数(高校・数Ⅰ)

30°二等辺三角形とは30°の内角をもつ二等辺三角形

30°二等辺三角形とは、1つの角度が30°で、それを一端にもつ二辺の長さが等しい三角形のことです。

30度二等辺三角形

面積の基本的な求め方は150°三角形と同じで、三角定規の形から解きます。

三角定規補助線を使う

三角定規の斜辺の長さがわかれば高さがわかるので・・・

底辺10 × 高さ5 ÷2=25

という感じで求められます。ここまではOKですね。

OKでない人は150°三角形の面積計算から読みましょう。

150°三角形の面積の求め方

実用上の知識は150°三角形のやり方で問題ないですが、進学塾や問題集の中には特殊な計算で解説していることがあります。

知らずにそういう塾や問題集を使うと「何それ?意味わからん…」になってしまうので、しくみを解説してみるのがこのページです。

30度二等辺三角形の隠しコマンド斜辺×斜辺÷4

「底辺 × 高さ ÷ 2」の公式に数字をあてはめるわけですが、この方法で高さを探すと30°二等辺三角形では次のようなことに気づくと思います。

  • 底辺=斜辺
  • 高さ=斜辺の半分

ということは、「底辺 × 高さ ÷2」は・・・=

〔斜辺〕×〔斜辺÷2〕÷〔2〕

カッコをとりはらうと・・・

〔斜辺〕×〔斜辺〕÷〔2〕÷〔2〕

そして「÷2÷2」は「÷4」にまとめることができるので・・・

斜辺 × 斜辺 ÷ 4 = 面積

・・・となるわけですね。

例題の三角形の面積は・・・

斜辺10 × 斜辺10 ÷4 = 25

150°三角形のやり方をマスターしたら積極的に使うといいと思います。

あとがき

知ってしまえば便利ですが、いきなり「10×10÷4=25」だと混乱しそうです。

段階を踏んで教えている生徒さんにならいいと思うのですが、市販の問題集の解説書でこれを使うのはナシではないかと思います。